DMITRY ZAITSEV Bi-facial Truth: a Case for
YAROSLAV SHRAMKO Generalized Truth Values

Abstract. We explore a possibility of generalization of classical truth values by dis-
tinguishing between their ontological and epistemic aspects and combining these aspects
within a joint semantical framework. The outcome is four generalized classical truth val-
ues implemented by Cartesian product of two sets of classical truth values, where each
generalized value comprises both ontological and epistemic components. This allows one
to define two unary twin connectives that can be called “semi-classical negations”. Each
of these negations deals only with one of the above mentioned components, and they may
be of use for a logical reconstruction of argumentative reasoning.

Keywords: Generalized truth values, Semi-Boolean complementation, Semi-classical nega-
tion, Super-classical logic.

1. Preliminaries: Generalized Truth Values

The conception of generalized truth values as subsets of a given basic set
was first introduced in [23, p. 763] as a generalization of some fundamental
ideas by J.M.Dunn and N.Belnap concerning interrelations between truth
and falsehood.

Initially Dunn in [10, 11] was aiming at representing incomplete or/and
inconsistent pieces of information by allowing sentences to be sometimes
neither (classically) true nor (classically) false, as well as true and false
simultaneously. To this effect it was proposed in [11, p.156] to consider
valuation to be a function from sentences into subsets of the set of classical
truth values 2 = {T, F'}. Then a valuation of a sentence can sometimes be
under-determined (if one ascribes to the sentence the empty set) or over-
determined (if one ascribes to the sentences the whole set 2).

Belnap [5, 6] employed this idea to develop his much celebrated four-
valued logic for a computer-based reasoning. To be able to take account
of incomplete or inconsistent data, Belnap’s computer operates with truth
values interpreted as information that has been “told” to it, namely T (plain
truth), F (plain falsehood), B (both truth and falsehood), N (neither truth
nor falsehood). These four truth values can also be interpreted as the subsets
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of 2, and one arrives thus at the set 4 being power-set of 2: 4 = P(2) =
e A {3 ={T,F,B,N}

This approach has been summarized and developed further in [24, 25,
29, 30] and expounded in a systematic way in [27]. The key notions of a gen-
eralized truth value and a generalized truth value function can be specified
as follows:

DEFINITION 1.1.

Let X be a (basic) set of initial truth values, and let P(X) be the power-set
of X. Then the elements of P(X) are called generalized truth values
defined on the basis of X.!

DEFINITION 1.2.

Let X be a (basic) set of initial truth values, P(X) the set of generalized
truth values defined on the basis of X, and £ a given language. Then a
generalized truth value function (defined on the basis of X)) is a function
from the set of sentences of £ into P(X).

According to Definition 1.1, generalized truth values are constructed on
the basis of some set of primitive truth values of an underlying low-level logic
(or several such logics with their truth values “lumped together”). In the
present paper we rather take as a starting point two basic sets of classical
truth values representing two different types of truth and falsity.

The idea is to expose ontological and epistemic aspects of classical truth
values, and to consider then new generalized truth values which may com-
prise both of these aspects. It turns out that the resulting construction allows
one to define two different negation-like connectives which can be regarded
as “semi-classical”. These connectives possess some (but not all) properties
of classical negation, and their superposition gives us the negation operator
of classical logic.

2. Ontological and epistemological interpretations of truth
values

G. Frege [16, 17] introduced the True and the False as special kinds of objects

serving as denotations of sentences?. A.Church specifies this further by

!Typically the sets of generalized truth values constitute specific algebraic structures,
which can be called multilattices, see [27, p. 51]. Multilattices are just lattices with several
orderings defined on them, such as bilattices [18, 3, 15], trilattices [23, 24, 22|, tetralattices
[33], etc. These structures can be used for generating various logical systems.

2Note that Fregean approach to truth values is based on two important presuppositions
embodying the fundamental principles of classical logic, namely, that there are but two
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saying that truth values are “abstract” objects [8, p.25]. J.Lukasiewicz
explains that “truth has its analogue in being, and falsehood, in non-being”
[20, p.90]. Such an understanding reveals an explicitly ontological view on
truth values.

By contrast, Belnap claims that the truth values of his four-valued logic
are “unabashedly epistemic” [2, p.521]. “Epistemic” means here that truth
value of a sentence is identified with information concerning this sentence, i.e.
with a certain information state. In classical cases the respective information
may just be that the given sentence is true or false.

This situation parallels the situation with the notion of truth as a whole.
It is sometimes observed that there are “two major strands of truth theories,
ontological and epistemological ones” [31, p.194]. Whereas the correspon-
dence theory of truth “stays entirely on the ontological side” and is “com-
pletely silent about the epistemological side of truth”, some of its rivals, such
as pragmatic and coherence conceptions, can be called “the epistemological
truth theories” [31, p. 197].

Moreover, it is also claimed that truth by itself “is really a hybrid notion”,
and this “hybrid nature of truth” embodies “the issues of epistemology and
ontology”:

The truth operator certainly has the role of expressing epistemic endorse-
ment. But there is a separate metaphysical question to be asked. Do the
statements that we would endorse tell us how the world really is? [13, p. 20]

Taking into account that subject matter of logic is generally determined
by the notion of truth which plays crucial role in defining central logical
notions (such as logical entailment), these different interpretations may fit
into a wider philosophical landscape concerning logic and its explications as
“formal epistemology” wversus “formal ontology”. According to J. Corcoran,
there are two different logical “paradigms” associated with the work of Aris-
totle and Boole respectively:

Aristotle was the founder of logic as formal epistemology and ... Boole was
the founder of logic as formal ontology. Aristotle laid down the groundwork
for a science of determining validity and invalidity of arguments. Boole laid
down the groundwork for a science of formal laws of being, in Tarskis words
“general laws governing the concepts common to all sciences” or “the most
general laws of thinkables” [9, p. 286].

such values—the True and the False (bi-valence) and that any sentence may denote only
one of these values at once (unique-valence). The very idea of generalized truth values has
emerged resulting from questioning exactly these classical presuppositions.
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Turning back to truth values one might convey the above distinction as
follows: from an epistemological viewpoint logic can be delineated by the
role truth values play in valid arguments, whereas ontologically logic can
be construed as exploring truth values as such (and their relations to other
entities, such as propositions, etc.).

Let us call the truth values considered from an ontological perspective
“referential values”, and let “inferential values” be the truth values treated as
characteristics (information) of sentences involved in reasoning. If we confine
ourselves just to two standard truth values—truth and falsity, then their
referential understanding will be that some sentence is (objectively) true or
false, and their inferential interpretation means that a sentence is taken as
(i.e., considered) true (and thus accepted) or false (and thus rejected)?.

R. Suszko in [32] put his famous thesis (named after him) dismissing the
very idea of a many-valued logic by discriminating between “algebraic val-
ues”, standing for admissible referents of sentences, and “logical values” used
for defining an inference relation. The distinction between referential and
inferential values evidently conforms with this idea. Suszko himself claimed
that there can only be two logical values, true and false, but G. Malinowski
in [21] argues persuasively in favor of inferential three-valuedness, and [30]
defends the idea of an “inferential many-valuedness” by generalizing the very
concept of a logical system.

Belnap observes an interesting tendency that frequently reveals in logical
considerations, namely a tendency “to vacillate between reading the various
values as epistemic on the one hand, and ontological on the other” [2, p. 521].
Such vacillations are especially typical in many-valued logics, where the pre-
cise meaning of the multiple truth values often remains unspecified:

1
’ 90
value,” or does it mean “truth value unknown”? In informal explanations

Does Lukasiewicz’s middle value mean “doesn’t have a proper truth
of what is going on, logicians sometimes move from one of these readings to
the other in order to save the interest of the enterprise [2, p.521].

Belnap considers also a possibility of combining classical the True and
the False with his four “told values”, obtaining in this way eight hybrid
values which “have a mixed status: they are in part epistemological and in
part ontological” [2, p.521]. The resulting eight-valued logic turns out to
be coincident with Belnap’s four-valued logic which is not surprising, since
ontological values play in this construction merely the role of a peculiar
“make-weight” to his epistemological values. However, the situation might

3Cf. also the distinction by Frege between “Wahrsein” and “Fiirwahrhalten”.
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be not as stable, if the ontological values were involved in the calculation of
logical operations.

Note also, that even within a two-valued framework (dealing with just
truth and falsity) it is not always clear in exactly which sense—referential or
inferential-—one uses the employed truth values. While Fregean approach is
entirely ontological, classical logic can also be developed in terms of inferen-
tial values, granted that certain presuppositions (idealizations) are taken—
indeed, all one needs to do is just to secure for these values the principles of
bi- and unique-valence.

Moreover, in some cases an informal understanding of classical truth val-
ues may include (and combine) both ontological (referential) and epistemic
(inferential) attitudes. For example, consider a rational and omniscient agent
who knows all the “objectively existing” truths and never accepts anything
contrary to what he knows. Assume further that the world by itself is en-
tirely complete and non-contradictory. Then, when describing reasoning of
this agent about such a world we can well confine ourselves with just two
truth values, where one value means “a sentence is true (objectively) and
accepted (by the agent)”, and the other—“a sentence is false (objectively)
and rejected (by the agent)”. These two truth values also are of a mixed—
onto-epistemic—character, nevertheless, the logic of such an agent would be
perfectly classical.

But a real reasoner can hardly ever be such an ideal agent. In “real life”
people can and do sometimes accept objectively false sentences or reject ob-
jectively true ones either by ignorance, or simply being incorrectly informed
or pragmatically motivated. Even if we assume the completeness and non-
contradictoriness of the world as such, and rationality of an arguing agent in
the sense that he never accepts and rejects anything simultaneously, as well
as has something to say on any sentence, we still may need some additional
values for the situations when a sentence can be objectively false but still
accepted by an agent or objectively true but nevertheless rejected.

3. Generalized Classical Truth Values

Let us mark the set of classical truth values interpreted referentially by
2! = {T, F'}. The elements of this set can be ordered to form a two-element
Boolean lattice TWO! with T as the top and F as the bottom (see Figure 1).
The relation <; naturally orders the elements of 2¢ by their “truth-content”
where truth is considered to be “more true” than falsehood.

Consider a propositional language £ with classical A, V, D, =. Let v? be
a valuation mapping the set of variables of £ into 2!. Then we can define:
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Figure 1. Lattice TWO"

DEFINITION 3.1.

(1) vt { (AN B) = vi(A) My v (B);
(2) vi(AV B) = vi(A) Uy vi(B);
(3) vi(A D B) = —i(A) Uy vi(B);
(4) v} (=A) = —wi(A),

where M, L, — are the operations of meet, join and complement defined
through the lattice ordering on TWO! in a standard way. Classical entail-
ment relation is introduced for arbitrary A and B of £ as follows:

DEFINITION 3.2.
A} B & Yo7 (v} (A) < vf(B)).

Thus, entailment relation is defined here through a lattice ordering,
whereby the latter can be called a logical order?.

If one marks the set of classical truth values interpreted inferentially by
2! = {1,0}, then classical logic can be reconstructed in the same language
with Definitions 3.1 and 3.2 where subscript ¢ is uniformly substituted by
1. And of course we obtain a two element Boolean lattice TWO! which is
strongly analogous to TWO!.

Now we can return to the idea of interpreting truth values as hybrid en-
tities embodying both an ontological and an epistemological sides. We wish
these values to remain essentially classical, i.e. any sentence should be either
true or false ontologically as well as epistemically, and it is impossible for a
sentence to be simultaneously both true and false ontologically or both true
and false epistemically. At the same time the principles of bi-unique-valence

“In bilattices and trilattices a logical order is also defined through the truth and/or
falsity “content” of truth values and is also used for determining an entailment relation of
the corresponding logic, see [26].
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hold only within each dimension (ontological and epistemic) separately, and
thus, when we combine these dimensions inside one and the same truth value,
it may well happen that some sentence is, e.g., ontologically true whereas
epistemically false.

To implement this idea we can pursue the way of combining initial truth
values which is essentially the method of constructing generalized truth val-
ues as described in Definition 1.1. However, as distinct from this definition
we now will accomplish a generalization procedure not on the basis of one
set of truth values, but taking two such sets simultaneously, 2¢ and 2'. Cor-
respondingly, the generalization itself will be performed not by means of a
power-setting formation, but by taking a Cartesian product of the basic sets.

We thus introduce what can be called Cartesian classical truth values
by constructing a direct product of the above two sets: 451 = 2t x 21, In
this way we arrive at the following four values which can be marked and
explained as follows:

T1 = (T,1): a sentence is both ontologically and epistemically true, i.e. it
is objectively true and accepted;

TO = (T,0): a sentence is ontologically true and epistemically false, i.e. it
is objectively true but rejected;

F1 = (F,1): a sentence is ontologically false and epistemically true, i.e. it
is objectively false but accepted;

FO = (F,0): a sentence is both ontologically and epistemically false, i.e. it
is objectively false and rejected.

Note again the difference between these four values and Belnap’s values
for computer-based reasoning. Whereas the truth values in Belnap’s logic
are purely epistemic, the four values above have a twofold onto-epistemic
nature. This duality not only allows one to express some important features
of the “real reasoning”, but retains also its essentially classical character
in the sense that the principles of bi-unique-valence concerning truth and
falsity (if taken in one and the same respect) continue to hold.

By taking a direct product of TWO! and TWO'! we obtain a distributive
lattice FOURY' = TWO! x TWO! as presented on Figure 2.

Let for every a € 45! a' means the corresponding element from TWO!
and a'—the one from TWO?!, and let <, M and U be the lattice order and
the operations of meet and join in FOUR"!. We have then the following
proposition:

PROPOSITION 3.3.
For any a = (a',a'), b= (b, b'):
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Figure 2. Lattice FOUR"!

(1) a <b<eat <, b and a' <4 b
(2) anb = (a1 b, a' 11y b1);
(3) alb = (a' Ly b, al Ly bY).

Define a valuation v*

as a map from the set of propositional variables
into 4°!. Having in mind a possibility of extending this valuation to an arbi-
trary compound formula, we can generally introduce an entailment relation

between formulas A and B of our language through the given lattice order:

DEFINITION 3.4.
A B & Yot(vt(A) < v4(B)).

Again, as in TWO! and TWO! the lattice order represents here a logi-
cal order’. Concerning logical connectives, it is straightforward to define

conjunction and disjunction through the operations of meet and join in
FOUR"!:

DEFINITION 3.5.
(1) vH(A A B) = v4(A) Novt(B);
(2) vH(AV B) = v*(A) Uv*(B).

It is interesting to observe that behavior of the elements from FOU R"!
in accordance to this definition seems much more natural than their lattice-
theoretical “prototypes” from Belnap’s logic. The later has sometimes been

5 Another way of defining entailment relation consists in selecting among truth values
some designated (and maybe also anti-designated) ones and to introduce entailment as a
relation which preserves designated values from premises to conclusion and/or preserves
anti-designated values from conclusion to premises.
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criticized for the counter-intuitive outcomes of certain combinations of “in-
termediate values”, when a disjunction of Both and None should be true,
and a conjunction of them should be false. In contrast to this, the un-
derlying onto-epistemic interpretation makes the analogous combinations of
Cartesian truth values completely plausible®.

To see this, it is instructive to look more closely at the cases when
con(dis)juncts take the values TO and F1. Indeed, if we have two sen-
tences, one of which is valuated as TO (being ontologically true but epistem-
ically false), and another as F1 (being ontologically false but epistemically
true), we have to assess their conjunction as overall false, both ontologically
(because of the second conjunct) and epistemically (because of the first con-
junct). That is, it must take the truth value FO—as it really is according to
Definition 3.5! And analogously one can argue for T1 as the natural truth
value of their disjunction.

For the sake of illustration consider a simple example. Imagine Fred,
who is looking for his cat and thinks it is somewhere in the kitchen, whereas
it is actually in the garden. Then, by employing values from 4%! sentence
“The cat is in the garden” will get value TO and sentence “The cat is in the
kitchen” value F1. Next, if we consider disjunction of the two sentences,
“The cat is in the garden or the cat is in the kitchen”, it should be both on-
tologically and epistemically true (since the first disjunct is ontologically and
the second epistemically true), and thus, its value can be nothing but T1.
As to conjunction “The cat is in the garden and it is in the kitchen”, we have
no other option but to evaluate it by F0, and here intuitive considerations
are also completely on a par with formal requirements of Definition 3.5.

Now, to get a full-fledged logical structure, we have to introduce some
kind of negation operator. A common semantic way to do this is to interpret
negation through a suitable operation of involution, i.e., an operation of
period 2. It can generally (and naturally) be expected from such an operation
to turn truth into falsity and wvice versa.

In FOURY!' one can immediately propose two operations of this kind.
The first one interchanges simultaneously between truth and falsity of the
same nature, and the second one connects ontological and epistemic dimen-
sions of the truth values interchanging between ontological truth and epis-
temic falsity, as well as between ontological falsity and epistemic truth. The
corresponding operations which we label by ‘~;” and ‘~;" can be defined as
presented in Table 1.

SWe are grateful to an anonymous referee for bringing forward this observation, as well
as for the example with Fred and his cat below.
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a ~pa | ~qa
T1 | FO | FO
TO | F1 | TO
F1 | To | F1
Fo| T1 | T1

Table 1. Complementations in FOUR"*

The following facts about ~j, and ~y can be easily verified (for any
a,b € FOURMY):

PROPOSITION 3.6.
(1) a U ~pa = T1;
(2) aM~pa = FO.

PROPOSITION 3.7.
(1) ~g~ga = a;
(2) a < ~gb=b< ~ya.

Proposition 3.6 means that ~j is just Boolean (classical) complementa-
tion, whereas Proposition 3.7 says that ~ is exactly De Morgan complemen-
tation. Hence, FOUR"! with ~; constitutes Boolean algebra, and with ~g
it forms De Morgan algebra. The following definition determines valuations
for classical negation (—;) and De Morgan negation (—y) correspondingly:

DEFINITION 3.8.
(1) v (—pA) = ~pv*(A);
(2) v*(mad) = ~av*(A).

As a result, if v* is extended to negative formulas by Definition 3.8 (1),
then Definition 3.4 determines classical consequence, and if we take Defini-
tion 3.8 (2), then the relation introduced by Definition 3.4 is axiomatized
by a consequence system of first degree entailment (FDE) formulated by
Anderson and Belnap in [1, p. 158]".

Let us visualize the difference between —;, and —4 more clearly. By way
of example, consider again the situation with Fred and his cat as described

"Anderson and Belnap conceived this system as the first degree fragment of their cal-
culus E (of entailment) and marked it by Efq.. Dunn in [12] calls the same system R ¢qe
stressing thus the fact that it is also a fragment of system R (of relevant implication).
We here use for the first degree consequence systems a generic label FDE—taken as such
it denotes the original system by Anderson and Belnap, and suitable subscripts can be
added for denoting other systems of this kind.
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above. Taking into account the truth value of the sentence “The cat is in the
kitchen” (F1), what truth value should be ascribed to its negation—“The
cat is not in the kitchen”? Since the cat in fact is not in the kitchen, the
latter sentence must be ontologically true. At the same time it must be
epistemically false, because it says something opposite to what Fred thinks.
In other words, the value of the negation is T0O. Note, that each component
(ontological and epistemic) of a truth value was ascribed here independently
of each other by employing a classical (correspondence) approach, i.e. by
looking at what is really the case in the corresponding sphere (the world and
Fred’s mind). It is therefore no wonder that according to Definition 3.8 (1)
the negation so evaluated turns out to be just Boolean ( classical) negation.

But what if to take the ontological and epistemic dimensions of a truth
value as somehow interconnected, and not in isolation of each other? For
example, think of an ontology as it is conceived in computer and information
science, i.e., as of certain “taxonomy of entities” constituting a framework
for knowledge representation used by information systems [28, p.158]. In
this sense ontology can be defined as “an explicit specification of a con-
ceptualization”, the latter being represented by “the objects, concepts, and
other entities that are assumed to exist in some area of interest and the
relationships that hold among them” [19, p.907]. Moreover, an information
system can operate with a set of data (a database) divergent in some re-
spects from its underlying ontology. It could be desirable to provide some
mechanism of interaction between ontology and database to enable their mu-
tual adjustments. Such adjustments can go both ways: not only databases
can be “calibrated” in view of the given ontology (cf. [28, p.159]), but also
ontology can be “acquired” (learned, extracted, generated, etc.) from this
or that database (see, e.g. [7]). It seems then quite natural for such systems
to evaluate sentences by means of Cartesian truth values which allow certain
logical interplay between their ontological and epistemic components.

Suitably interpreted negation operator can play its role in securing in-
terconnection of this kind. Namely, let us stipulate that not-A should be
included in our database, and thus, taken as epistemically true if and only
if the given ontology induces falsity of A, and in turn, not-A should be ren-
dered as ontologically true if and only if A is not present in our database,
i.e., there is some external evidence that A is not accepted.

For example, let an ontology of a computer (a computer program) in-
cludes a cat, a garden and a kitchen, and also relation “to be in” holding
between the cat and the garden only. Assume further that Fred creates
on this computer some database to which he for some reason (maybe by
ignorance) includes the sentence “The cat is in the kitchen” (referring to
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the same cat and kitchen as specified in the underlying ontology). Clearly,
our computer, taking onto account both ontology and the database, eval-
uates this sentence by F1. But what about the sentence “The cat is not
in the kitchen”? According to the above stipulations, the computer should
modify Fred’s database with the latter sentence, but also the given ontology
should be adjusted to ensure the ontological falsity of the sentence. Thus,
the negative sentence obtains the truth value F1 as well.

In this way the operator determined by Definition 3.8 (2) behaves exactly
like De Morgan negation of relevant logic with F1 and TO as the fixed
points. Interestingly, it does so by specifying that the negation of a sentence
is accepted if and only if there is some (objective) reason for the falsity of the
sentence, and a sentence is rejected if and only if there is some (objective)
reason for taking its negation as true. It is noteworthy that under such
interpretation it may well happen that both A and —4A belong to some
database; and it is also possible that neither A nor —yA are present in a
database. But this is exactly as it should be in a semantics of relevant logic,
which may allow simultaneous truth (falsity) of some formulas together with
their negations.

In this way one obtains an interesting non-standard explanation of what
the difference between classical and relevant logics might consist in. Namely,
whereas in classical logic ontological and epistemic components of Cartesian
truth values work in a complete isolation of each other (although in a per-
fectly “parallel way”), in relevant logic—under the proposed interpretation
of truth values—these components become closely interconnected (and in-
deed mutually relevant).

4. Semi-classical Negations

The operation of Boolean complementation is subject both to the conditions
(1) and (2) from Proposition 3.6. We now consider another kind of an
involutive operation that can naturally be labeled as “semi-Boolean” (or
“semi-classical”) complementation. Namely, an element of a lattice is said
to be semi-classically complemented exactly in the case when it can obey
only one of the above mentioned conditions at once.

DEFINITION 4.1.

Let L be a lattice with T as the top and L as the bottom, and let ’ be an
unary operation defined on L. Then this operation is called a semi-Boolean
complementation iff for any a € L the following condition holds:

ald =T & ald # L.
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a a't | alt
T1 | F1 | TO
T0 | FO | T1
F1 | T1 | Fo
FOo | TO | F1

Table 2. Semi-Boolean complementations in FOU R%!

The operation of semi-Boolean complementation so defined can be used
for determining a specific negation-like connective which can be called a
semi-classical negation.

DEFINITION 4.2.

Let £ be a propositional language with a unary connective =, and L be a
lattice of truth values with an operation of semi-Boolean complementation
" defined on it. Let v be a map from the set of atomic sentences of £ into

L. Then - is called a semi-classical negation (determined by ’ in L) iff
v(—A) = v(A).

It turns out that splitting between ontological and epistemic components
of truth values allows one to define in FOUR"!' two natural semi-Boolean
complementations. Indeed, whereas Boolean and De Morgan complementa-
tions deal with both aspects of the elements from FOU R"!, it can sometimes
be useful to operate only with one of these components (ontological or epis-
temic) leaving the other untouched.

We arrive thus at the idea of two operations, one of which fixes the infer-
ential constituent of a truth value and inverts referential truth into referential
falsity and back, and the other interchanges only between inferential truth
and falsity completely ignoring the referential component. We mark these
operations by a’* and a/* correspondingly (for an arbitrary a € FOUR'Y),
and define them as presented in Table 2. A direct check shows that these
operations are indeed semi-Boolean complementations.

The following proposition is easy to establish (for any a € FOU Rb!):

PRroproOSITION 4.3.
(1) a't"t = a'*"* = a;
(2) a''t = a"V"t = ~pa.

Thus, both semi-Boolean complementations defined on FOURb! are in-
volutions and their superposition gives classical complementation. In full
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conformity with Definition 4.2 we introduce then two unary connectives de-
termined by semi-Boolean complementations in FOU R%!:

DEFINITION 4.4.
(1) v(=A) = v*(A)";
(2) v (-1 4) = vi(A)".

In this way we have got two different unary operators (semi-classical
negations) which can be called referential negation and inferential negation
correspondingly. These negations may be of use to construct logics for ar-
gumentative reasoning. For example, inferential negation can be employed
if we wish to deny someone’s statements while “objective reality” remains
unchanged. On the other side referential negation may well come in handy
when we are going to stick out for our beliefs, no matter how radically the
reality is changing.

Let us be a little bit more explicit at this point. Since a semi-classical
negation is in fact performed only on one half of a Cartesian truth value, it
turns out to be of a complex character, managing to embody some compound
content by a sole unary operator. Namely, for a sentence A its inferential
negation —1 A can be informally explicated as “although it is the case that A,
an agent denies A”, whereas referential negation —; A stands for a composite
construction “although it is not the case that A, an agent accepts A”. Thus,
employing semi-classical negations allows one to “enucleate” ontological or
epistemic component of a sentence and make it manifest. For example, if
A represents the sentence “The cat is in the kitchen” with the value F1 (in
virtue of the intended interpretation that the cat is in fact in the garden,
but Fred thinks, it is in the kitchen), then =1 A would mean “Although the
cat is in the kitchen, Fred denies this”, and obtains thus the value FO.

Some combinations of referential and inferential negations might be of
special interest. E.g., a sentence of the form —; AA—1 A should be interpreted
as “it is not the case that A, and an agent accepts A, and it is the case that
A, and an agent denies A”. A simple rearrangement gives us: “it is not
the case that A, and it is the case that A, and an agent accepts A, and an
agent denies A”, which clearly demonstrates that such sentence should be
logically false. By contrast, a sentence of the form —;—; A should have a
different meaning, since here we deal with a superposition of two operations.
The resulting meaning would be something like “it is not the case that it is
the case that A, and an agent denies that he/she accepts A”. An obvious
simplification gives us just “it is not the case that A, and an agent denies
A” which amounts to the Boolean negation of A.
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In what follows we will suggest an idea of two logical systems each dealing
with only one of the above semi-classical negations. We will formulate these
logics semantically, elucidate some of their essential properties, and then
point out a possibility of combining the negations under consideration within
a joint logical framework.

5. Logics for Semi-classical Negations

Let us define three (nonimplicational) propositional languages in Backus-
Naur form as follows:

L: Au=p|ANA|AVA| A
L1 Au=p|ANA|AVA|—1A4;
L1 Au=p|ANA|AVA|~A| A

Thus, L1 = L£;U L. We can now conceive three logics, each corresponding
to one of these languages.

Namely, let valuation v* for A, V and —; be determined by Definitions 3.5
and 4.4 (1), and let =; be determined by Definition 3.4 with the restriction
that A, B € £;. We obtain then a consequence logic FDE,..; defined seman-
tically for the formulas of language £;. This logic consists of all the pairs
of formulas (A, B), where A, B € L;, such that A =, B constitutes a valid
consequence according to Definition 3.4.

It is not difficult to see that the set of all the valid consequences A |=; B,
where neither A nor B contains —, is determined by the “positive part”
of the first degree entailment system Efq. from [1, § 15], namely the postu-
lates for Entailment, Conjunction, Disjunction and Distribution presented

in [1, p.158]. As to formulas with —, the following propositions are easily
verifiable:

PROPOSITION 5.1.

The following statements are valid consequences of FDE,.;:
A= A

1A e A

AN B = —(AV B)

~+(AAB) = AV B

AN B = (AN B)

—+(AV B) = AV B

~+ANB = —~(ANB)

NS v o~
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8. AN— Al —(AV B)

9. +(AANB) |t AV — A
10. (AV —~A)AN(BV —~B) =t (ANB)V (AN B)
11. (AVB)AN—(AV B) = (AN—A)V (BA—B)
12. wA = (AV B)V ~(AV B)
13. (ANB)AN—(AAB) E A
14. AN—~AAB = —BAB.

PROPOSITION 5.2.
The following statements are mot valid in FDE, .5 :

1. ~(AV B) = ~AA B
2. = AV ~B = (AN B)
3. AN A ):t B

4. Bl AV A

, _AEB

- 4B A

Thus, although semi-classical negation is an involution (an operation of
period 2), it is conformed with only two of De Morgan laws and is not
contrapositive.

The consequence logic FDE;, s for formulas of language £; is obtained
semantically by considering valuation for =1 as subject to condition (2) from
Definition 4.2, and by determining relation =; by Definition 3.4 restricted
to the formulas of £q. Clearly, the analogues to Propositions 5.1 and 5.2
hold with respect to FDE;,; by changing uniformly the subscript ¢ to 1.

Remarkably, although —; and —; should have analogues (actually, the
same) deductive characterizations, they are still different connectives, i.e.
they are not unique and can play different “inferential role” in the sense
of plonk and plink treated by Belnap in [4, p.133] (cf. also [14]). Indeed,
if we consider a logic resulting from the union of FDE,.; and FDE;,,
with a united semantics by taking together Definitions 3.5 and 4.4 in full
generality and entailment relation = determined by Definition 3.4 for the
united language £,UL7, we can take note of the fact that neither A = —1 A
nor -1 A = —;A are valid in this new logic.

The latter observation opens the way to logical systems which can com-
prise in a non-trivial way both semi-classical negations. It should be possible
to introduce within these systems the classical negation as a derivative con-
nective by means of a superposition of two different semi-classical negations,



Bi-facial Truth: a Case for Generalized Truth Values 1315

cf. Proposition 4.3 (2). In this way one can obtain logical systems that not
only incorporate the whole classical logic, but contain some additional prin-
ciples which result from the splitting of classical negation. In view of this
such logics can be dubbed as the super-classical ones.

We thus label the union of FDE,.; and FDE;, s described above as the
consequence logic FDE, (the first degree fragment of super-classical logic)
with both semi-classical negations. Propositions 5.1 and 5.2, as well as their
1-analogues hold for FDE,, (with = as the entailment relation). We have
additionally the following statements which clarify the interrelations between
— and -1 within FDE,. (5} means entailment in both directions, and ~
means ——1 or =1y ad lib):

PROPOSITION 5.3.
The following statements are valid consequences of FDEg:

A =E 1A

1A dE 1A

A g 1A
~(ANB)HE~AV~B
~(AV B)HE ~AN~B
AgE ~~A
~+AN—1BEAVB
BE AV —A
~+AN—1AEB
BEAV~A

. AN~AE=DB

. wWAN~BE—(AV B)

© % RS G e~

N N~
W® =D

13. —|1A/\NB):—\1(A\/B)
— A —~B

" ﬁfBiflA
A —B
AEB

16. NB’;NA

We leave for future work the task of providing an adequate deductive
formalization of the logics FDE,.;, FDE;,; and FDE,.
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6. Concluding remarks

In the present paper we have developed a method of generalizing classical
truth values by taking their Cartesian product. In this way we were able to
represent ontological and epistemic aspects of these values within a united
semantic framework.

Essentially the same effect can be achieved by employing a generalization
procedure specified in Definition 1.1 by a power setting formation on the
basis of some initial set of truth values. Namely, why not to take as such
a starting point a basic set consisting exclusively of values representing just
two different types of truth? In furtherance of this idea generalized classical
truth values can be constructed on the basis of the set II, which includes
two basic values standing for truth from different spheres, i.e. II = {71},
and P(II) = {{T,1},{T'},{1},@}. In full conformity with the underlying
classical principles falsity (ontological or epistemic) means here simply an
absence of (the corresponding) truth.

We obtain thus another interpretation of our four truth values: T1 =
{T,1}, TO = {T}, F1 = {1}, FO = @. The lattice FOUR"! can be re-
constructed then by ordering the elements from P(II) by the standard set-
inclusion. This ordering amalgamates then an information ordering and a
truth ordering into a single logical order, which can be used for definition
of an entailment relation. It is also quite natural to define conjunction and
disjunction through the standard set-theoretic operations which are also the
operations of meet and join in FOUR"' so reconstructed. Actually, the
whole semantic framework developed in the present paper can be uniformly
reconstructed on this basis.

However, as we believe, the very method of Cartesian truth values can
open interesting prospects in investigating new logical systems arising from
various combinations of logics of different types.
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