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ABSTRACT. In this paper we reconsider the notion of an n-valued proposi-

tional logic. In many-valued logic, sometimes a distinction is made not only

between designated and undesignated (not designated) truth values, but be-

tween designated, undesignated, and antidesignated truth values. But even if

the set of truth values is, in fact, tripartitioned, usually only a single semantic

consequence relation is defined that preserves the possession of a designated

value from the premises to the conclusions of an inference. We shall argue

that if the set of semantical values is not bipartitioned into the designated and

the antidesignated truth values, it is natural to define two entailment relations,

a positive one that preserves possessing a designated value from the premises

to the conclusions of an inference, and a negative one that preserves possess-

ing an antidesignated value from the conclusions to the premises. Once this

distinction has been drawn, it is quite natural to reflect it in the logical object

language and to contemplate many-valued logics Λ, whose language is split

into a positive and a matching negative logical vocabulary. If the positive and

the negative entailment relations do not coincide, the interpretations of match-

ing pairs of connectives are distinct, and nevertheless the positive entailment

relation restricted to the positive vocabulary is isomorphic to the negative en-

tailment relation restricted to the negative vocabulary, then we shall say that

Λ is a harmonious many-valued logic. We shall present examples of har-

monious finitely-valued logics. These examples are not ad hoc, but emerge

naturally in the context of generalizing Nuel Belnap’s ideas on how a single

computer should think to how interconnected computers should reason. We

shall conclude this paper with some remarks on generalizing the notion of a

harmonious n-valued propositional logic.

1 Many-valued propositional logics generalized
There exists a simple definition of the notion of an extensional n-valued (2 ≤
n ∈ N) propositional logic as a valuational system, see, for example, [22] or the

standard definition of a logical matrix, say in [18]. According to this definition, an

n-valued propositional logic is a structure

〈V,D, { fc : c ∈ C}〉,
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where V is a non-empty set containing n elements (2 ≤ n), D is a non-empty

proper subset of V, C is the (non-empty, finite) set of (primitive) connectives of

some propositional language L, and every fc is a function on V with the same

arity as c. The elements ofV are usually called truth values, and the elements of

D are regarded as the designated truth values. A structure 〈V,D, { fc : c ∈ C}〉
may be viewed as a logic, because the set of designated truth values determines a

relation of semantical consequence (entailment) |= ⊆ P(L)×P(L), where P(L) is

the powerset of L. A valuation function v is a function from the set of all atomic

formulas (alias sentence letters) intoV. Every valuation function v is inductively

extended to a function from the set of all L-formulas into V by the following

definition:
v(c(A1, . . . ,Am)) = fc(v(A1), . . . , v(Am)),

where c is an m-place connective from C. A set of formulas Δ entails a set of

formulas Γ (Δ |= Γ) iff for every valuation function v the following holds true: if

for every A ∈ Δ, v(A) ∈ D, then v(B) ∈ D for some B ∈ Γ. An n-valued tautology

then is a formula A such that ∅ |= A.

In some writings, the definition of an n-valued propositional logic and the termi-

nology is slightly different. First, the elements ofV are sometimes referred to as

quasi truth values. Gottwald [14, p. 2] explains that one reason for using the term

‘quasi truth value’ is that there is no convincing and uniform interpretation1 of the

truth values that in many-valued logic are taken in addition to the classical truth

values true and false, an understanding that, according to Gottwald, associates

the additional values with the naive understanding of being true, respectively the

naive understanding of degrees of being true. In later publications, Gottwald has

changed his terminology and states that “to [a]void any confusion with the case of

classical logic one prefers in many-valued logic to speak of truth degrees and to

use the word “truth value” only for classical logic” [15, p. 4]. The term ‘semantical

value’ (or just ‘value’) seems to be non-committal.

What is perhaps more important than these differences in terminology is that in

part of the literature, for example in [14], [15], [18], [23], an explicit distinction

is drawn between a set D+ of designated values and a set D− of antidesignated
values, where the latter need not coincide with the complement of D+.2 Usually,

this distinction is, however, not fully exploited in many-valued logic: The notion

of entailment is defined with respect to the designated values, and no independent

additional entailment relation is defined with respect to the antidesignated values.

1At least there was no such interpretation at the time of the writing of [14].
2Incidentally, this distinction is relevant for an assessment of Suszko’s Thesis, see [32], the claim

that “there are but two logical values, true and false” [6, p. 169], which is given a formal content

by the so-called Suszko Reduction, the proof that every Tarskian n-valued propositional logic is also

characterized by a bivalent semantics. For a recent treatment and references to the literature, see [6]. A

critical discussion of Suszko’s Thesis is presented in [36], which is a companion article to the present

paper.
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Gottwald is quite aware of the distinction between designated and antidesignated

values. When he discusses the notion of a contradiction (or logical falsity), for

example, he explains that there are two ways of generalizing this notion from clas-

sical logic to many-valued logic, [15, p. 32, notation adjusted]:

1. In the case that the given system S of propositional many-valued

logic has a suitable negation connective ∼, one can take as logi-

cal falsities all those wffs H for which ∼H is a logical truth.

2. In the case that the given system S of propositional many-valued

logic has antidesignated truth degrees, one can take as logical

falsities all those wffs H which assume only antidesignated truth

degrees. . .

Gottwald assumes that D+ ∩ D− = ∅ and remarks that if the designated and an-

tidesignated values exhaust all truth degrees and, moreover, the negation operation

∼ satisfies the following standard condition (notation adjusted):

f∼(x) ∈ D+ iff x � D+,
then the two notions of a contradiction coincide [15, p. 32]. Since D− may differ

from the complement ofD+, another standard condition for negation ∼ is:

f∼(x) ∈ D+ iff x ∈ D− and f∼(x) ∈ D− iff x ∈ D+.
If the latter condition is satisfied, the two ways of defining the notion of a contra-

diction are equivalent also ifV \D+ �D−.

Rescher [23, p. 68], who does not consider semantic consequence but only tau-

tologies and contradictions, explains that “there may be good reason for letting
one and the same truth-value be both designated and antidesignated.” However,

he also warns that “we would not want it to happen that there is some truth-value

ν which is both designated and antidesignated when it is also the case that there

is some formula which uniformly assumes this truth-value, for then this formula

would be both a tautology and a contradiction” [23, p. 67].

Although Gottwald recognizes thatV \D+ may be distinct fromD−,3 he nev-

ertheless follows the tradition in defining only a single semantic consequence rela-

3On p. 30 of [15] he explains (notation adjusted):

Even in the case that D+ � ∅ and D− � ∅ it is, however, not necessarily D+ ∪ D−
=V, which means that together with designated and antidesignated truth degrees also

undesignated truth degrees may exist. This possibility indicates two essentially differ-

ent positions regarding the designation of truth degrees. The first one assumes only

a binary division of the set of truth degrees and can proceed by simply marking a set

of designated truth degrees, treating the undesignated ones like antidesignated ones.

The second position assumes a tripartition and marks some truth degrees as designated,

some others as antidesignated, and has besides these both types also some undesignated

truth degrees. . . .
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tion in terms ofD+. If this privileged treatment ofD+ is given up, a more general

definition of an n-valued propositional logic emerges.

DEFINITION 1. LetL be a language in a denumerable set of sentence letters and

a finite non-empty set of finitary connectives C. An n-valued propositional logic

is a structure

〈V,D+,D−, { fc : c ∈ C}〉
whereV is a non-empty set containing n elements (2 ≤ n),D+ andD− are distinct

non-empty proper subsets of V, and every fc is a function on V with the same

arity as c. Again, every valuation v is inductively extended to a function from the

set of all L-formulas intoV by setting: v(c(A1, . . . ,Am)) = fc(v(A1), . . . , v(Am)),
for every m-place c ∈ C. For all sets of L-formulas Δ, Γ, semantic consequence

relations |=+ and |=− are defined as follows:

1. Δ |=+ Γ iff for every valuation function v: (if for every A ∈ Δ, v(A) ∈ D+,

then v(B) ∈ D+ for some B ∈ Γ);
2. Δ |=− Γ iff for every valuation function v: (if for every A ∈ Γ, v(A) ∈ D−,

then v(B) ∈ D− for some B ∈ Δ).

An n-valued tautology then is a formula A such that ∅ |=+ A, and an n-valued

contradiction is a formula A such that A |=− ∅.

DEFINITION 2. Let Λ = 〈V,D+,D−, { fc : c ∈ C}〉 be an n-valued propositional

logic. Λ is called a separated n-valued logic, ifV \D+ � D− (that is ifV is not

partitioned into the non-empty sets D+ and D−), and Λ is said to be refined, if it

is separated and |=+ � |=−.

Clearly, if an n-valued logic is not separated, the two entailment relations |=+
and |=− coincide. In a refined n-valued propositional logic, however, neither “posi-

tive” entailment |=+ nor “negative” entailment |=− need enjoy a privileged status in

comparison to each other. Moreover, an entailment relation is usually defined with

respect to a given formal language. For the separate entailment relations |=+ and

|=− one might, therefore, expect that they come with their own, in a sense “dual”,

languages, L+ and L− (see the next section for further explanations). Then one

might be interested in n-valued logics in which these languages have the same

signature.

DEFINITION 3. Let C be a finite non-empty set of finitary connectives, let L+
be the language based on C+ = {c+ | c ∈ C}, and let L− be the language based on

C− = {c− | c ∈ C}. If A is an L+-formula, let A− be the result of replacing every

connective c+ in A by c−. If Δ is a set of L+ formulas, let Δ− = {A− | A ∈ Δ}. If

the language L of a refined n-valued logic Λ is based on C+ ∪ C−, then Λ is said

to be harmonious iff (i) for all sets of L+-formulas Δ, Γ: Δ |=+ Γ iff Δ− |=− Γ−,

and (ii) for every c ∈ C, fc+ � fc− .
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In the present paper, we shall, first of all, argue that the distinction between

designated and antidesignated values, and therefore also the distinction between

positive entailment |=+ and negative entailment |=−, is an important distinction

(Section 2). In Section 3 we shall consider some separated n-valued propositional

logics, and in Sections 4 and 5 we shall present natural examples of harmonious

finitely-valued logics. Finally, we shall make some brief remarks on generalizing

harmony (Section 6).

2 Designated and antidesignated values
Why is it important to draw a distinction between designated and antidesignated

values? The notion of a set of designated values is often considered as a gener-

alization of the notion of truth. Similarly the set of antidesignated values can be

regarded as representing a generalized concept of falsity. However, logic and its

terminology is to a large extent predominated by the notion of truth. The Fregean

Bedeutung of a declarative sentence (or, in the first place, a thought) is a truth

value. According to Frege, there are exactly two truth values, The True and The
False, henceforth just true (T) and false (F). Whereas T and F are referred to as

truth values, neither F nor T is called a falsity value.

Moreover, Frege explicitly characterized logic as “the science of the most gen-

eral laws of being true”, see H. Sluga’s translation in [31, p. 86]. This view finds

its manifestation in the fact that most of the fundamental logical notions – logi-

cal operations, relations etc. – are usually defined through the category of truth.

Thus, valid consequence is usually defined as preserving truth in passing from the

premises to the conclusions of an inference. It is required that for every model

M, if all the premises are true in M, then so is at least one conclusion. By con-

traposition, in a valid inference being not true is preserved from the conclusions

to at least one of the premises. For every model M, if every conclusion is not

true in M, then so is at least one of the premises. As to falsity, its role in such

definitions frequently remains a subordinated one, if any. When constructing a

semantic model, “false” is often understood as a mere abbreviation for “not true”,

for instance when the classical truth-table definition for conjunction is stated as:

“A conjunctive sentence is true if both of its conjuncts are true, otherwise it is not

true (i.e., false).”

In general failing to be true and being false may, however, fall apart. Although

this is the very point of many-valued logic, a distinction between falsity and the

absence of truth (or truth and the absence of falsity) is often represented only by the

values that V contains in addition to T and F, and not by distinguishing between

a set of designated values D+ and another set of antidesignated values D− (and

the consequence relations induced by these sets). We are interested in inferences

that preserve truth, because we are interested in true beliefs. But likewise we are

interested in inferences in which false conclusions are bound to depend on at least
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one false premise, because we are interested in avoiding false beliefs. This point

has vividly been made by William James in his essay ‘The will to believe’:

Believe truth! Shun error!—These, we see, are two materially different laws; and by choosing
between them we may end by coloring differently our whole intellectual life. We may regard the
chase for truth as paramount, and the avoidance of error as secondary; or we may, on the other
hand, treat the avoidance of error as more imperative, and let truth take its chance [16, p. 18].

It seems then quite natural to modify (or to extend) in a certain respect the

Fregean definition of logic by saying that its scope is studying not just the laws

of being true, but rather of being true and being false. An immediate effect of

this modification consists in acknowledging the importance of falsity (and more

generally, antidesignated values) for defining logical notions. Every definition for-

mulated in terms of truth should be “counterbalanced” with a “parallel” (dual)

definition formulated in terms of falsity.

This observation not only justifies the distinction between positive (|=+) and

negative (|=−) entailment relations, but also clarifies the idea of the corresponding

languages L+ and L− with “positive” and “negative” connectives. As an example

let us take the operation of conjunction in classical logic. The connective ∧+ can

naturally be defined through its truth conditions: v(A ∧+ B) = T iff v(A) = T
and v(B) = T. But we may also wish to consider the connective ∧−, exhaustively

defined by means of the falsity conditions: v(A ∧− B) = F iff v(A) = F or v(B) =
F. Now, although in classical logic ∧+ and ∧− are, obviously, coincident, in the

general case, for example in various many-valued logics, they may well differ from

each other. Thus, if the relation between designated and antidesignated values is

not so straightforward as in classical logic, a separate introduction of the positive

and negative connectives (in fact: “truth-connectives” and “falsity-connectives”)

may acquire especial significance.

Let us generalize this point with respect to the propositional connectives of

conjunction and disjunction in the context of many-valued logics. There is a view

that in a many-valued semantics f∧ and f∨ are just the functions of taking the

minimum and the maximum of their arguments. As R. Dewitt put it:

In many-valued systems, intuitions concerning the appropriate truth-conditions for disjunction
and conjunction are the most widely agreed on. In particular, there is general agreement that a
disjunction should take the maximum value of the disjuncts, while a conjunction should take the
minimum value of the conjuncts [8, p. 552].

As a result, we get the following definitions:

v(A ∧ B) = min(v(A), v(B));
v(A ∨ B) = max(v(A), v(B)),

which Dewitt refers to as the standard conditions for conjunction and disjunction.

One may note, however, that these conditions are justified only if the set of seman-

tical values is in some way linearly ordered, so that any two values are mutually
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comparable. And although this is frequently indeed the case, e.g., when the se-

mantical values are identified with some points on a numerical segment, there also

exist a number of many-valued systems where not all of the values are comparable

with each other.4 In such systems, the standard conditions cannot be employed

directly.

The idea of truth degrees in many-valued logic naturally implies that semanti-

cal values may differ in their truth-content. Moreover, it is assumed that any of

the designated values is “more true” (is of a higher degree in its truth-content)

than any of the values which is not designated. Thus, taking into account the

“minimality-maximality” intuition described above, conjunction can be more gen-

erally regarded as an operation ∧+ that in a sense minimizes the truth-content (or

the “designatedness”) of the conjuncts, and disjunction as an operation ∨+ that

maximizes the truth-content of the disjuncts.5 That is, for truth values that are

comparable in their truth degrees, f∧+ is just the standard min-function, but if two

truth values x and y are incomparable, the “less true”–relation nevertheless should

be such that it determines f∧+ (x, y), the outcome of which is less true than both
of the conjuncts. And similarly for disjunction. In this way, we should be able to

obtain definitions of notions of conjunction ∧+ and disjunction ∨+ purely in terms

of truth:

v(A ∧+ B) = min+(v(A), v(B));
v(A ∨+ B) = max+(v(A), v(B)),

where min+ and max+ are generalized functions of truth-minimizing and truth-

maximizing, correspondingly.

Now, if falsity is not the same as non-truth, an independent consideration of

propositional connectives from the standpoint of antidesignated values is appro-

priate. In this sense conjunction should be regarded as the falsity-maximizer and

disjunction as the falsity-minimizer, and thus, we should be able to obtain gener-

alized functions max− and min− of maximizing and minimizing, respectively, the

falsity-content of their arguments, so that operations ∧− and ∨− can be defined

purely in terms of falsity:

v(A ∧− B) = max−(v(A), v(B));
v(A ∨− B) = min−(v(A), v(B)).

We also briefly observe the difference between two kinds of negation . Namely,

whereas f∼+ can be viewed as a function that (within every semantical value) turns

4Cf., for instance, the values N and B under the order ≤t in the four-valued logic B4 considered in

Section 4.
5And of course, a conjunction should maximize the non-truth of the conjuncts, while a disjunction

should minimize the non-truth of the disjuncts.
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truth into non-truth and vice versa, f∼− can be treated as an operation that inter-

changes exclusively between falsity and non-falsity.

One might object that the distinction between designated values and antide-

signated values makes sense only for doxastically or epistemically interpreted se-

mantical values. Certainly, if a proposition is not believed (known) to be true, this

does not imply that the proposition is believed (known) to be false. The distinction

is, however, sensible also for other, non-doxastical and non-epistemical adverbial

qualifications of truth and falsity. If a proposition is not necessarily true, for in-

stance, it need not be necessarily false. The designated semantical values are used

to define an entailment relation |=+ that preserves possessing a doxastically wanted

value in passing from the premises to the conclusions of an inference. Analo-

gously, the antidesignated values may be used to define an entailment relation |=−
by requiring that if the conclusions are doxastically unwanted, at least one of the

assumptions is doxastically unwanted, too. Among the doxastically wanted values

there may be values interpreted, for example, as “true”, “neither true nor false”,

“known to be true”, “unknown to be false”, “necessarily true”, “possibly true”,

etc. Among the doxastically unwanted values there may be values interpreted, for

example, as “false”, “neither true nor false”, “known to be false”, “unknown to be

true”, “necessarily false”, “possibly false”, etc.

Whether “neither true nor false” is doxastically wanted or unwanted may be

a matter of perspective. A proposition evaluated as “neither true nor false” is

not falsified and hence possibly wanted, but it is also not verified and therefore

possibly unwanted. If one wants to take into account that both perspectives are

legitimate, a value read as “neither true nor false” may even sensibly be classified

as both wanted and unwanted. That is, in general it is reasonable to distinguish

between designated, antidesignated, and undesignated semantical values, and also

not to exclude the possibility of values that are both designated and antidesignated.

These considerations can be generalized, see Section 6.

3 Some separated finitely-valued logics
We first consider a separated version of Kleene’s well-known 3-valued logic.

DEFINITION 4. Kleene’s strong 3-valued logic K3 is defined as follows:

K3 = 〈{T,∅,F}, {T}, {∅,F}, { fc : c ∈ {∼,∧,∨,⊃}}〉, where the functions fc are

defined by the following tables:

f∼
T F
∅ ∅

F T

f∧ T ∅ F
T T ∅ F
∅ ∅ ∅ F
F F F F
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f∨ T ∅ F
T T T T
∅ T ∅ ∅

F T ∅ F

f⊃ T ∅ F
T T ∅ F
∅ T ∅ ∅

F T T T

DEFINITION 5. The separated 3-valued propositional logic K3* is defined as fol-

lows:

K3* := 〈{T,∅,F}, {T}, {F}, { fc : c ∈ {∼,∧,∨,⊃}}〉, where the functions fc are de-

fined as in K3.

OBSERVATION 6. K3* is refined, i.e., the relations |=+ and |=− do not coincide.

Proof. In K3* formulas of the form A ∧ (A ⊃ B) have the following truth table:

A B A ∧ (A ⊃ B)
T T T
T ∅ ∅

T F F
∅ T ∅

∅ ∅ ∅

∗ ∅ F ∅

F T F
F ∅ F
F F F

Whereas A∧ (A ⊃ B) |=+ B, the row marked with an asterisk shows that A∧ (A ⊃
B) �|=− B. �

Although it is not surprising, perhaps, that in a separated n-valued logic the

relations |=+ and |=− need not coincide, there are separated n-valued logics which

are not refined. Let N := ∅, T := {T}, F := {F} and B := {T,F}.
DEFINITION 7. The useful 4-valued logic of Dunn and Belnap is the structure

B4 = 〈{N,T,F,B}, {T,B}, {N,F}, { fc : c ∈ {∼,∧,∨}}〉, where the functions fc are

defined as follows:

f∼
T F
B B
N N
F T

f∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

f∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

DEFINITION 8. The separated 4-valued propositional logic B4* is the structure

〈{N,T,F,B}, {T,B}, {F,B}, { fc : c ∈ {∼,∧,∨, }}〉, where the functions fc are de-

fined as in B4.

The set {N,T,F,B} is also referred to as 4. Note that in B4* not only 4 \ D+ �
D−, but alsoD+ ∩D− � ∅.
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OBSERVATION 9. The separated logic B4* is not refined: |=+ = |=−.

Proof. A proof (for the case of single premises and conclusions) using Dunn’s

method of “dual” valuations is given, e.g., in [10, p. 10]. There it is observed

that the relation |=+ alias |=− also coincides with the relation |= defined as follows:

Δ |= Γ iff (Δ |=+ Γ and Δ |=− Γ). �

Clearly, K3 does not have any tautologies, because any formula takes the value

∅ if every propositional variable occurring in it takes the value ∅. It has been

observed in [23] that for the same reason the 3-valued logic which is now known

as the Logic of Paradox [21], LP, has no contradictions.

DEFINITION 10. The Logic of Paradox LP is the 3-valued propositional logic

〈{T,∅,F}, {T,∅}, {F}, { fc : c ∈ {∼,∧,∨,⊃}}〉, where the functions fc are defined as

in K3.

In B4 there are neither any tautologies (consider the constant valuation that as-

signs only N) nor any contradictions (consider the constant valuation that assigns

only B).6 Obviously, |=+ in B4 coincides with |=+ and |=− in B4*. Our main ques-

tion is: Are there natural examples of harmonious finitely-valued logics?

4 A harmonious finitely-valued logic
We shall present a harmonious finitely-valued logic that emerges naturally in the

context of generalizing Nuel Belnap’s ideas on how a computer should reason.

The bilattice FOUR2

Our starting point is the logic B4, which is also known as the logic of first degree
entailment. Belnap ([3], [4], see also [1, §81]), building on ideas developed by

M. Dunn (see, e.g., [9] and [10]), proposed B4 as a “useful four-valued logic”

for dealing with information received by a computer. As Belnap points out, a

computer may receive data from various (maybe independent) sources. Belnap’s

computers have to take into account various kinds of information concerning a

given sentence. Besides the standard (classical) cases, when a computer obtains

information either that the sentence is (1) true or that it is (2) false, two other

(non-standard) situations are possible: (3) nothing is told about the sentence or

(4) the sources supply inconsistent information, information that the sentence is

true and information that it is false. Thus, we obtain the four truth values from B4
that naturally correspond to these four “informational” situations: N (there is no

information that the sentence is false and no information that it is true), F (there is

merely information that the sentence is false), T (there is merely information that

6Rescher [23, p. 67] seems to interpret the fact that the logic LP has no contradictions as a reason

for distinguishing between antidesignated and undesignated values, because in LP no formula receives

an undesignated truth value under any valuation.
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the sentence is true), and B (there is information that the sentence is false, but there

is also information that it is true).

M. Ginsberg [12], [13] noticed that the four truth values of B4 constitute an

interesting algebraic structure, which he called a bilattice.7 Figure 1 presents this

bilattice (FOUR2) by a double Hasse diagram. We have here two partial orderings:

F

B

T

N

i

t

Figure 1. The bilattice FOUR2

≤i and ≤t. The relation ≤i orders the elements of 4 by set-inclusion and represents

an increase of information. The relation ≤t is said to represent an increase of

truth among the elements constituting 4.8 The relation ≤t is of special importance,

because this order determines the logic of Belnap’s computers. First, conjunction

and disjunction are interpreted as the operations of lattice meet and join relative to

≤t. These operations are given by the truth functions f∧ and f∨ from Definition

7. Moreover, negation ∼ is interpreted as the function f∼ from Definition 7, which

represents an inversion of ≤t in the sense that x ≤t y iff f∼(y) ≤t f∼(x).
A valuation function into 4 is then recursively extended in the standard way to

a map v from the language of B4 into 4, and the entailment relation of B4 can be

defined as follows:

Δ |= Γ iff ∀v
�

t
{v(A) | A ∈ Δ} ≤t

⊔
t
{v(A) | A ∈ Γ},

7Roughly speaking a bilattice is a set with two partial orderings, each determining its own lattice on

this set (see also [2], [11]).
8Correspondingly one can distinguish between an information (approximation) lattice and a logical

lattice. Belnap [3] has considered both these lattices separately under the labels A4 and L4.
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where �t is lattice meet and �t is lattice join in the complete lattice (4,≤t).9

From isolated computers to computer networks
One can observe that Belnap’s interpretation works perfectly well if we deal with

one (isolated) computer receiving information from classical sources, i.e., these

sources operate exclusively with the classical truth values. As soon as a computer

C is connected to other computers, there is no reason to assume that these com-

puters cannot pass higher-level information concerning a given proposition to C.

If several computers form a computer network, Belnap’s ideas that motivated B4
can be generalized. Consider, for example, four computers: C1,C2,C3, and C4
connected to another computer C′1, a server, to which they are supposed to sup-

ply information (Figure 2). It is fairly clear that the logic of the server itself (so,

the network as a whole) cannot remain four-valued any more. Indeed, suppose

C1 informs C′1 that a sentence is true only (has the value T), whereas C2 supplies

inconsistent information (the sentence is both true and false, i.e., has the value B).

In this situation C′1 has received the information that the sentence simultaneously

C1

C′1C2 C4

C3

C′′1

Figure 2. A computer network

is true only as well as both true and false, in other words, it has a value not from

4, but from P(4), namely the value TB = {{T}, {T,B}}. If C′1 has been informed

simultaneously by C1 that a sentence is true-only, by C2 that it is false-only, by

C3 that it is both-true-and-false, and by C4 that it is neither-true-nor-false, then the

value NFTB = {∅, {T}, {F}, {T,F}} is far from being a “madness” (cf. [20, p. 19])

but is just an adequate value which should be ascribed to the sentence by C′. That

9Another standard definition of multiple-conclusion semantic consequence builds compactness into

this notion by requiring that Δ |= Γ iff there exist finite subsets Δ′ ⊆ Δ and Γ′ ⊆ Γ such that for every

valuation v, v(
∧

t Δ
′) ≤t v(

∨
t Γ
′).
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is, the logic of C′1 has to be 16-valued. And if we wish to extend our network

and to connect C′1 to some “higher” computer (C′′1 ), then the amount of semantical

values will increase to 216 = 65536. As we shall see later, this exponential growth

of the number of truth values need not worry us too much, since we always will

end up with the same semantical (and syntactical) consequence relations, see [29],

[30], and Section 5.

Thus, generalizing Belnap’s idea of truth values encoding information passed to

a computer leads us in a first step, when we assume that a computer informed by a

classical source informs another computer, from 4 to 16 = P(4) with the following

generalized truth values (where A = NFTB stands for “all”):

1. N = ∅ 9. FT = {{F} , {T}}
2. N = {∅} 10. FB = {{F} , {F,T}}
3. F = {{F}} 11. TB = {{T} , {F,T}}
4. T = {{T}} 12. NFT = {∅, {F} , {T}}
5. B = {{F,T}} 13. NFB = {∅, {F} , {F,T}}
6. NF = {∅, {F}} 14. NTB = {∅, {T} , {F,T}}
7. NT = {∅, {T}} 15. FTB = {{F} , {T} , {F,T}}
8. NB = {∅, {F,T}} 16. A = {∅, {T} , {F} , {F,T}} .

It appears that this passage from 4 to 16 is essential for obtaining a natural exam-

ple of a harmonious finitely-valued logic. Whereas in FOUR2 the truth order is

defined in terms of both T and F, on the richer set of values 16 separate truth and

falsity orderings ≤t and ≤ f can be isolated. In this 16-valued setting, truth and

falsity are thereby treated as independent notions in their own right.

The trilattice SIXTEEN3

According to the truth order of FOUR2, the value B is less true than T, but this

means that the truth order takes into account the absence of falsity, F, and thus, is

in fact a truth-and-falsity order.10 The truth values in 16, however, allow one to

define separately a truth order ≤t by referring only to the classical value T and a

falsity order ≤ f by referring only to F. For every x in 16 we first define the sets xt,

x−t, x f , and x− f as follows:

xt :=
{
y ∈ x | T ∈ y

}
; x−t :=

{
y ∈ x | T � y

}
;

x f :=
{
y ∈ x | F ∈ y

}
; x− f :=

{
y ∈ x | F � y

}
.

10In FOUR2 maximizing (resp. minimizing) truth means simultaneously minimizing (resp. maxi-

mizing) falsity. It is therefore impossible in B4 to discriminate between L+ and L−: for every c ∈ C,

fc+ = fc− .
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DEFINITION 11. For every x, y in 16:

1. x ≤i y iff x ⊆ y;

2. x ≤t y iff xt ⊆ yt and y−t ⊆ x−t;

3. x ≤ f y iff x f ⊆ y f and y− f ⊆ x− f .

As a result, we obtain an algebraic structure that combines the three (complete)

lattices (16,≤i), (16,≤t), and (16,≤ f ) into the trilattice
SIXTEEN3 = (16,≤i,≤t,≤ f ), see [28]. SIXTEEN3 is presented by a triple Hasse

diagram in Figure 3 (cf. also Figure 5 in [27]).

TB

A

N

NF

FB FT NB NT

FTB NTB

B T

NFB NFT

F N

i

t

f−1

Figure 3. Trilattice SIXTEEN3 (projection t – f−1)
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Meets and joints exist in SIXTEEN3 for all three partial orders. We will use �
and � with the appropriate subscripts for these operations under the correspond-

ing ordering relations. Since from the operations one can recover the relations,

SIXTEEN3 may also be represented as the structure (16,�i,�i,�t,�t,� f ,� f ). In

what follows we will be especially interested in the “logical” operations �t,�t,� f
and � f . Some key properties of these operations are summarized in the following

proposition:

PROPOSITION 12. For any x, y in SIXTEEN3:

1. T ∈ x �t y⇔ T ∈ x and T ∈ y;
B ∈ x �t y⇔ B ∈ x and B ∈ y;
F ∈ x �t y⇔ F ∈ x or F ∈ y;
N ∈ x �t y⇔ N ∈ x or N ∈ y;

2. T ∈ x �t y⇔ T ∈ x or T ∈ y;
B ∈ x �t y⇔ B ∈ x or B ∈ y;
F ∈ x �t y⇔ F ∈ x and F ∈ y;
N ∈ x �t y⇔ N ∈ x and N ∈ y;

3. T ∈ x � f y⇔ T ∈ x and T ∈ y;
N ∈ x � f y⇔ N ∈ x and N ∈ y;
F ∈ x � f y⇔ F ∈ x or F ∈ y;
B ∈ x � f y⇔ B ∈ x or B ∈ y;

4. T ∈ x � f y⇔ T ∈ x or T ∈ y;
N ∈ x � f y⇔ N ∈ x or N ∈ y;
F ∈ x � f y⇔ F ∈ x and F ∈ y;
B ∈ x � f y⇔ B ∈ x and B ∈ y.

Since the relations ≤t and ≤ f are treated on a par, the operations �t and �t are

not privileged as interpretations of conjunction and disjunction. The operation � f
may as well be regarded as a conjunction and � f as a disjunction. In other words,

the logical vocabulary may be naturally split into a positive truth vocabulary and

a negative falsity vocabulary. Also certain unary operations with natural negation

-like properties are available in SIXTEEN3.

DEFINITION 13. A unary operation −t (− f ,−i) on SIXTEEN3 is said to be a

t-inversion ( f -inversion, i-inversion) iff the following conditions are satisfied:

1. t-inversion(−t) :
(a) a ≤t b⇒ −tb ≤t −ta;
(b) a ≤ f b⇒ −ta ≤ f −tb;
(c) a ≤i b⇒ −ta ≤i −tb;
(d) −t −ta = a.

2. f -inversion(− f ) :
(a) a ≤t b⇒ − f a ≤t − f b;
(b) a ≤ f b⇒ − f b ≤ f − f a;
(c) a ≤i b⇒ − f a ≤i − f b;
(d) − f − f a = a.

3. i-inversion(−i) :
(a) a ≤t b⇒ −ia ≤t −ib;
(b) a ≤ f b⇒ −ia ≤ f −ib;
(c) a ≤i b⇒ −ib ≤i −ia;
(d) −i −ia = a.

In SIXTEEN3 such operations are definable as shown in Table 1. Both −t and

− f are natural interpretations for a negation connective. The following proposition

highlights some important properties of these operations.
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a −ta − f a −ia a −ta − f a −ia
N N N A NB FT FT FT
N T F NFT FB FB NT FB
F B N NFB TB NF TB TB
T N B NTB NFT NTB NFB N
B F T FTB NFB FTB NFT F

NF TB NF NF NTB NFT FTB T
NT NT FB NT FTB NFB NTB B
FT NB NB NB A A A N

Table 1. Inversions in SIXTEEN3

PROPOSITION 14. For any x in SIXTEEN3 :

1. T ∈ −tx⇔ N ∈ x;
N ∈ −tx⇔ T ∈ x;
F ∈ −tx⇔ B ∈ x;
B ∈ −tx⇔ F ∈ x;

2. T ∈ − f x⇔ B ∈ x;
B ∈ − f x⇔ T ∈ x;
F ∈ − f x⇔ N ∈ x;
N ∈ − f x⇔ F ∈ x.

The requirements that the information order ≤i is left untouched by the op-

erations of t-inversion and f -inversion and that t-inversion ( f -inversion) has no

effect on ≤ f (≤t) are satisfied by the operations −t and − f defined in Table 1, but

these requirements might also be given up. If they are abandoned, the definition

of t-inversion ( f -inversion) refers only to the truth-order (falsity-order). What this

suggests is that not only conjunction and disjunction, but also negation emerges in

two versions. Moreover, since x �t y � x � f y, x �t y � x � f y and −tx � − f x,

the two logical orderings ≤t and ≤ f indeed give rise to two distinct sets of logical

operations of the same arity.

A harmonious logic inspired by the logic of SIXTEEN3

An appropriate syntax for the logic emerging from SIXTEEN3 is given by a denu-

merable set of propositional variables and three propositional languages Lt, L f ,

and Lt f based on this set. They are defined in Backus–Naur form as follows:

Lt : A ::= p | ∼tA | A ∧t A | A ∨t A
L f : A ::= p | ∼ f A | A ∧ f A | A ∨ f A
Lt f : A ::= p | ∼tA | ∼ f A | A ∧t A | A ∨t A | A ∧ f A | A ∨ f A

The logic of SIXTEEN3 is semantically presented as a bi-consequence system,

namely the structure (Lt f , |=t, |= f ), where the two entailment relations |=t and |= f
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are defined with respect to the truth order ≤t and the falsity order ≤ f , respectively.

The main point of the present paper consists in defining the notion of a harmonious

finitely-valued propositional logic and pointing out that the logic of SIXTEEN3
and similar structures lead to examples of harmonious many-valued logics. We

first define (Lt f , |=t, |= f ).

DEFINITION 15. Let v be a map from the set of propositional variables into

16. The function v is recursively extended to a function from the set of all Lt f -

formulas into 16 as follows:

1. v (A ∧t B) = v (A) �t v (B) ;
2. v (A ∨t B) = v (A) �t v (B) ;
3. v (∼tA) = −tv (A) ;

4. v
(
A ∧ f B

)
= v (A) � f v (B) ;

5. v
(
A ∨ f B

)
= v (A) � f v (B) ;

6. v
(
∼f A
)
= − f v (A) .

The relations |=t⊆ P(Lt f )×P(Lt f ) and |= f⊆ P(Lt f )×P(Lt f ) are defined by the

following equivalences:

Δ |=t Γ iff ∀v
�

t{v(A) | A ∈ Δ} ≤t
⊔

t{v(A) | A ∈ Γ};
Δ |= f Γ iff ∀v

⊔
f {v(A) | A ∈ Γ} ≤ f

�
f {v(A) | A ∈ Δ}.

We now define a separated 16-valued logic in the language Lt f .

DEFINITION 16. The separated 16-valued logic B16 is the structure 〈16, {x ∈ 16 |
xt is non-empty}, {x ∈ 16 | x f is non-empty}, {−t,�t,�t, − f , � f , � f }〉. Moreover,

for all sets of Lt f -formulas Δ, Γ, semantic consequence relations |=+ and |=− are

defined in accordance with 1. and 2. of Definition 1.

OBSERVATION 17. B16 is refined.

Proof. It can easily be seen that in B16 the relations |=+ and |=− are distinct, e.g. in

view of the following counterexample: (A ∧ f B) |=− A but (A ∧ f B) �|=+ A (since,

e.g., F � f FTB = FB). �

PROPOSITION 18. The 16-valued propositional logic B16 is harmonious.

Proof. Obviously, we may view the language Lt f as being based on a set of posi-

tive connectives C+ = {∼t,∧t,∨t} and a set of negative connectives with matching

arity C− = {∼ f ,∧ f ,∨ f }, i.e., C = {∼,∧,∨}. Moreover, we already observed that

the condition fct � fc f is satisfied for every c ∈ C. If A is an Lt-formula, let Af be

the result of replacing every connective ct in A by c f . If Δ is a set of Lt formulas,

letΔ f = {Af | A ∈ Δ}. It remains to be shown that in B16 for all sets ofLt-formulas

Δ, Γ,
(†) Δ |=+ Γ iff Δ f |=− Γ f .
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This follows from Lemma 4.2, Lemma 4.3, Theorem 4.4 and Theorem 4.7 in [28]

for ≤t and the analogous versions of these statements for ≤ f . Lemma 4.3 says

that for every A, B ∈ Lt: A |=t B iff ∀v(T ∈ v(A) ⇒ T ∈ v(B)). According

to Lemma 4.2, within language Lt, the condition ∀v(T ∈ v(A) ⇒ T ∈ v(B)) is

equivalent to ∀v(B ∈ v(A) ⇒ B ∈ v(B)). Thus, for every A, B ∈ Lt: A |=t B iff

∀v(T ∈ v(A) or B ∈ v(A)⇒ T ∈ v(B) or B ∈ v(B)). This means that |=+ restricted

to Lt is the same relation as |=t restricted to Lt, and it is then axiomatized as first

degree entailment (Theorems 4.4 and 4.7). Since for every A, B ∈ L f : A |= f B iff

∀v(F ∈ v(B)⇒ F ∈ v(A)) iff ∀v(B ∈ v(B)⇒ B ∈ v(A)), and the restriction of |=−
toL f (= the restriction of |= f toL f ) is also axiomatized as first degree entailment,

condition (†) is satisfied. �

5 Harmony ad infinitum
The trilattice SIXTEEN3 is an example of a multilattice, see [28], [34].

DEFINITION 19. An n-dimensional multilattice (or just n-lattice) is a structure

Mn = (S,≤1, . . . ,≤n) such that S is a non-empty set and ≤1, . . . ,≤n are partial

orders defined on S such that (S,≤1) , . . . , (S,≤n) are pairwise distinct lattices.

More concretely, the structure SIXTEEN3 is an example of a Belnap-trilattice,

see [30]. Belnap-trilattices are obtained by iterated powerset-formation applied to

the set 4 and by generalizing the definitions of a truth order and a falsity order

on 16. If X is a set, let P1(X) := P(X) and Pn(X) := P(Pn−1(X)) for 1 < n,

n ∈N. We obtain an infinite collection of sets of generalized semantical values by

considering Pn(4). Each of these sets can be equipped with relations ≤i, ≤t, and

≤ f in a canonical way as in Definition 11 by defining for every x, y ∈ Pn(4) the

sets xt, x−t, x f and x− f as follows:

xt := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) T ∈ yn−1}
x−t := {y0 ∈ x | ¬(∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) T ∈ yn−1}
x f := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) F ∈ yn−1}
x− f := {y0 ∈ x | ¬(∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) F ∈ yn−1}

Thus, x−t = x \ xt and x− f = x \ x f . We say that x is t-positive (t-negative,

f -positive, f -negative) iff xt (x−t, x f , x− f ) is non-empty and we denote by Pn(4)t

(Pn(4)−t, Pn(4) f , Pn(4)− f ) the set of all t-positive (resp. t-negative, f -positive,

f -negative) elements of Pn(4).

DEFINITION 20. A Belnap-trilattice is a structure

Mn
3 := (Pn(4),�i,�i,�t,�t,� f ,� f ),

where �i (�t, � f ) is the lattice meet and �i (�t, � f ) is the lattice join with respect

to the ordering ≤i (≤t, ≤ f ) on Pn(4), n ≥ 1.
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Thus, SIXTEEN3 (=M1
3) is the smallest Belnap-trilattice. Moreover, if unary

operations −t and − f satisfying the conditions from Definition 13 exist on Pn(4),
then we may consider Belnap-trilattices with t-inversion and f -inversion.

PROPOSITION 21. If Mn
3 is a Belnap-trilattice, then there exist operations of

t-inversion and f -inversion on Pn(4).

In [30] a canonical definition for such inversion operations is presented. Thus,

we may without loss of generality confine our considerations to Belnap-trilattices

with t-inversions and f -inversions.

We consider again the languages Lt, L f , Lt f defined in the previous section.

An n-valuation is a function vn from the set of propositional variables into Pn(4).
This function can be extended to an interpretation of arbitrary formulas in Pn(4)
by Definition 15 (replacing v by vn).

DEFINITION 22. The relations |=n
t ⊆ P(Lt f )×P(Lt f ) and |=n

f⊆ P(Lt f )×P(Lt f )
are defined by the following equivalences:

Δ |=n
t Γ iff ∀vn �

t{vn(A) | A ∈ Δ} ≤t
⊔

t{vn(A) | A ∈ Γ};
Δ |=n

f Γ iff ∀vn ⊔
f {vn(A) | A ∈ Γ} ≤ f

�
f {vn(A) | A ∈ Δ}.

Semantically, the logic of a Belnap-trilattice Mn
3 is the bi-consequence system

(Lt f , |=n
t , |=n

f ).

We now define an infinite chain of separated finitely-valued logics.

DEFINITION 23. Let �n be the cardinality of Pn(4). The �n-valued logic B�n
is the structure 〈Pn(4),Dn+,Dn−, {−t,�t,�t,− f ,� f ,� f }〉, where Dn+ := {x ∈
Pn(4) | x is t-positive} and Dn− := {x ∈ Pn(4) | x is f -positive}. For every

logic B�n, for all sets of Lt f -formulas Δ, Γ, the semantic consequence relations

|=n+ and |=n− are defined in accordance with 1. and 2. of Definition 1.

OBSERVATION 24. For every n ∈N, the logic B�n is refined.

Proof. Obviously, B�n is separated. That in B�n the relations |=n+ and |=n− are

distinct can again be seen by noticing that for every n ∈ N, (A ∧ f B) |=n− A but

(A ∧ f B) �|=n+ A (since for everyMn
3 there may well exist x, y ∈ Pn(4), such that

x � f y is t-positive, whereas either x or y is not). �

PROPOSITION 25. For every n ∈N, the logic B�n is harmonious.

Proof. Again, we regard Lt f as being based on C+ = {∼t,∧t,∨t} and the set of

connectives with matching arity C− = {∼ f ,∧ f ,∨ f }, so that C = {∼,∧,∨}. Again,

it can easily be seen that the condition fct � fc f is satisfied for every c ∈ C. We

must show that in B�n for all sets of Lt-formulas Δ, Γ,

Δ |=n+ Γ iff Δ f |=n− Γ f .
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We use the main result of [30], namely that for every n ∈ N, the truth entailment

relation |=n
t of (Lt f , |=n

t , |=n
f ) restricted to Lt and the falsity entailment relation |=n

f
of (Lt f , |=n

t , |=n
f ) restricted to L f can again both be axiomatized as first degree en-

tailment. The proof systems differ only insofar, as every connective ct is uniformly

replaced by its negative counterpart c f . Thus, given the completeness theorem for

|=n
t and its counterpart for |=n

f , it is enough to show that for all sets of Lt-formulas

Δ, Γ: Δ |=n+ Γ in B�n iff Δ |=n
t Γ, and for all sets of L f -formulas Δ, Γ: Δ |=n− Γ in

B�n iff Δ |=n
f Γ. But this follows from Corollary 17 in [30]: For any A,B ∈ Lt:

A �n
t B iff ∀vn(x ∈ vn(A)t ⇒ x ∈ vn(B)t)

and the analogous result for falsity entailment: For any A,B ∈ L f :

A �n
f B iff ∀vn(x ∈ vn(B) f ⇒ x ∈ vn(A) f ).

�

6 Some remarks on generalizing harmony
The point of departure for our considerations was the familiar and simple notion

of an extensional n-valued propositional logic. We argued that the distinction be-

tween designated, antidesignated, and undesignated values and values that are both

designated and antidesignated ought to be taken seriously. There is no reason to

privilege designation over antidesignation when it comes to defining entailment.

Hence we suggested a slightly more general notion of an n-valued logic. Whereas

the set D+ of designated values determines a positive entailment relation |=+, the

set D− of antidesignated values determines a negative entailment relation |=−.

Once we have two entailment relations, it is natural to consider two languages.

This consideration then led us to defining the notion of a harmonious n-valued

logic.

It has been observed quite a while ago already that one may consider n-valued

logics in which the truth functions f∧ and f∨ for conjunction and disjunction form

a lattice on the underlying set of truth values, see, for example [24], [25]. Thus,

given an n-valued propositional logic, one may wonder whether a lattice order can

be defined from some given truth functions. However, in the light of the research

on bilattices and trilattices, the direction of interest goes in the opposite direction.

Given some natural partial orders on sets of semantical values, one may wonder

whether these orderings form lattices on the underlying sets and thereby give rise

to a conjunction (lattice meet), disjunction (lattice join), and hopefully also some

sort of negation . In the bilattice FOUR2, there is only one “logical” order, there

referred to as the truth order. In a Belnap-trilattice Mn
3 , there are two logical

orderings, the truth order ≤t and the falsity order ≤ f . From the bi-consequence
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system of any Belnap-trilattice we obtained a harmonious finitely-valued logic.

But neither did we consider the following relation induced by the information order

|=i, defined as

Δ |=n
i Γ iff ∀vn �

i{vn(A) | A ∈ Δ} ≤i
⊔

i{vn(A) | A ∈ Γ},
nor did we consider additional orderings or other sets of truth values with more

than two lattice orderings on them. This would, however, be an interesting direc-

tion to pursue, if one aims at finding examples of many-valued logics displaying

a more general form of harmony. Thus, generalizations of the notion of a harmo-

nious n-valued propositional logic can be obtained by replacing the set {D+,D−}
of distinguished subsets of the set of values V by a set {D1, . . . ,Dn} of distin-

guished subsets of V. Moreover, the association of entailment relations with the

distinguished subsets ofV may vary.

A relation |=⊆ P(L)×P(L) is a Tarski-Scott multiple conclusion consequence

relation iff it satisfies the following conditions:

1. For every Δ ⊆ L, Δ |= Δ (reflexivity);

2. If Δ |= Γ ∪ {A} and {A} ∪Θ |= Σ, then Δ ∪Θ |= Γ ∪ Σ (transitivity);

3. If Δ ⊆ Θ, Γ ⊆ Σ, and Δ |= Γ, then Θ |= Σ (monotony).

A Tarski-Scott multiple conclusion consequence relation is said to be structural, if

it is closed under substitution.

In an n-valued logic which is refined in the sense of Definition 2, in addition to

|=+ and |=− several other, possibly interesting semantical relations can be defined,

though not all of them turn out to be Tarski-Scott multiple conclusion entailment

relations. In order to refer to these relations in a compact way, we need a more

systematic notation. Let + stand for designated values, − for antidesignated val-

ues, u for neither designated nor antidesignated values, and b for values that are

both designated and antidesignated. Let +, −, u, and b stand for the respective

complements. Moreover, let⇐ indicate preservation from the conclusions to the

premises,⇒ preservation from the premises to the conclusions, and⇔ preserva-

tion in both directions. Then |=+ is denoted as |=+⇒+ and |=− as |=−⇐−. The relation

|= defined (for a given n-valued logic) by requiring that Δ |= Γ iff both Δ |=+ Γ and

Δ |=− Γ (cf. the proof of Observation 9) is denoted as |=(+⇒+,−⇐−), and the relation

defined by requiring that Δ |= Γ iff (Δ |=+ Γ or Δ |=− Γ) is denoted as |=(+⇒+|−⇐−).

We may consider in addition to |=+ and |=− for example the following “semantic

consequence” relations:

• |=+⇐+;

• |=−⇒−;
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• |=u⇒u; |=u⇐u;

• |=b⇒b; |=b⇐b;

• |=+⇒+; |=+⇐+;

• |=−⇒−; |=−⇐−;

• |=u⇒u; |=u⇐u;

• |=b⇒b; |=b⇐b;

• |=•⇒◦; |=•⇐◦;
where •, ◦ ∈ {+,−,u,b,+,−,u,b} and • � ◦;

• |=(•⇒◦,�⇐♦); |=(•⇐◦,�⇒♦);
where •, ◦, �, ♦ ∈ {+,−,u,b,+,−,u,b} and • � � or ◦ � ♦;

• |=(•⇒◦,�⇒♦); |=(•⇐◦,�⇐♦);
where •, ◦, �, ♦ ∈ {+,−,u,b,+,−,u,b} and • � � or ◦ � ♦;

• |=(•⇒◦|�⇐♦); |=(•⇐◦|�⇒♦);
where •, ◦, �, ♦ ∈ {+,−,u,b,+,−,u,b} and • � � or ◦ � ♦;

• |=(•⇒◦|�⇒♦); |=(•⇐◦|�⇐♦);
where •, ◦, �, ♦ ∈ {+,−,u,b,+,−,u,b} and • � � or ◦ � ♦.

Since consequence relations normally are not required to be symmetric, relations

like |=+⇔+ are, perhaps, not of primary interest. But the relation |=(+⇔+,u⇒−) =
|=+⇔+ ∩ |=u⇒−, for example, might be of some interest. Investigating and apply-

ing such non-standard semantic consequence relations is not as exotic as it might

seem at first sight, and, indeed, some such relations have been considered in the

literature. We already noted that |=(+⇒+,−⇐−) is dealt with in [10], and there are

other examples.

EXAMPLE 26. G. Malinowski [17], [18], [19], emphasizing the distinction be-

tween accepted and rejected propositions, draws the distinction between desig-

nated and antidesignated values and uses it to generalize Tarski’s notion of a con-

sequence operation to the notion of a quasi-consequence operation (or just q-con-

sequence operation). Also, single-conclusion q-consequence relations are defined;

they relate not antidesignated assumptions to designated (single) conclusions. In

our notation, multiple-conclusion q-consequence is the relation |=−⇒+.

EXAMPLE 27. Another non-standard consequence relation has been presented in

[7] and is there said not to be “overly outlandish or inconceivable”, although it fails
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to be a Tarski-Scott multiple-conclusion consequence relation. In our notation, the

“tonk-consequence” relation of [7] is the relation |=(+⇒+|−⇐−) on the set 4 withD+
= {T,B} and D− = {F,B}. Since the logic is not transitive, sound truth tables for

Prior’s connective tonk are available such that this addition of tonk does not

have a trivializing effect (but see also [35]).

EXAMPLE 28. Formula-to-formula q-consequence, though not under this name,

is also among the varieties of semantic consequence considered in Chapters 3 and

4 of [33]. The types of consequence relations presented by Thijsse include the

relations which in our notation for the multiple conclusion case are denoted as fol-

lows: |=+⇒+, |=−⇒+, |=−⇒−, |=+⇒−. Thijsse remarks that besides the familiar |=+⇒+
the relation |=−⇒− “turns out to be interesting, both in theory and application”.

Yet another way of defining a generalized notion of semantic consequence can

be found in [5]. The two types of relation |=+⇒+ and |=−⇒− are there merged

into a single four-place bi-consequence relation. Note also that n-place semantic

sequents for n-valued logics have been considered by Schröter [26], see also [14],

[15].

After these preparatory remarks, we are in a position to define a generalized

notion of a harmonious n-valued propositional logic.

DEFINITION 29. Let L be a language in a denumerable set of sentence letters

and a finite non-empty set of finitary connectives C. An n-valued propositional

logic is a structure

〈V,D1, . . . ,Dk, { fc : c ∈ C}〉
whereV is a non-empty set of cardinality n (2 ≤ n), 2 ≤ k, everyDi (1 ≤ i ≤ k) is

a non-empty proper subset ofV, the setsDi are pairwise distinct, and every fc is

a function onV with the same arity as c. The setsDi are called distinguished sets.

A valuation v is inductively extended to a function from the set of all L-formulas

intoV by setting: v(c(A1, . . . ,Am)) = fc(v(A1), . . . , v(Am)), for every m-place c ∈
C. For every set Di, two semantic consequence relation |=⇒i and |=⇐i are defined

as follows:

1. Δ |=⇒i Γ iff for every valuation function v: (if for every A ∈ Δ, v(A) ∈ Di,

then v(B) ∈ Di for some B ∈ Γ);
2. Δ |=⇐i Γ iff for every valuation function v: (if for every A ∈ Γ, v(A) ∈ Di,

then v(B) ∈ Di for some B ∈ Δ).

Obviously, the relations |=⇒i and |=⇐i are inverses of each other.

DEFINITION 30. Let Λ = 〈V,D1, . . . ,Dk, { fc : c ∈ C}〉 be an n-valued logic.

Λ is said to be separated, if for every Di, there exists no D j such that i � j and

V \ Di = D j. Λ is said to be refined, if it is separated and the relations |=⇒i are

pairwise distinct (and hence also the relations |=◦i with ◦ ∈ {⇒,⇐} are distinct).
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DEFINITION 31. Let C be a finite non-empty set of finitary connectives, and let

Li be the language based on Ci = {ci | c ∈ C} for some k ∈ N such that 2 ≤ i ≤ k.

If i � j, 2 ≤ j ≤ k and if A is an Li-formula, then let Aj be the result of replacing

every connective ci in A by cj. If Δ is a set of Li formulas, let Δ j = {Aj | A ∈ Δ}.
If the language L of a refined n-valued logic Λ with k distinguished sets is based

on the set
⋃

i≤k Ci, then Λ is said to be harmonious iff (i) for every i, j with i � j
and all sets of Li-formulas Δ, Γ the following holds: (i) Δ |=⇒i Γ iff Δ j |=⇐j Γ j, (ii)

Δ |=⇐i Γ iff Δ j |=⇒j Γ j, and (iii) for every c ∈ C, fci � fcj .

The logics B�n are harmonious in this generalized sense. We may set k = 2,D1

= D+, D2 = D−, C1 = {∼t,∧t,∨t}, C2 = {∼ f ,∧ f ,∨ f }, |=⇒1 = |=+, |=⇐1 = (|=+)−1

(the inverse of |=+), |=⇐2 = |=−, and |=⇒2 = (|=−)−1.

Another obvious generalization of the present considerations is giving up the

restriction to finitely many values.

We end this paper with the following question: Are there natural examples of

harmonious n-valued logics 〈V,D1,D2,D3, { fc : c ∈ C}〉with three distinguished

sets of semantical values?
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